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Abstract—As part counts in high performance computing
systems are projected to increase faster than part reliabilities,
there is increasing interest in enabling jobs to continue to execute
in the presence of failures. Process replication has been shown
to be a viable method to accomplish this, but previous studies
have focussed on full replication levels (dual, triple, etc). In
this work, we present a model for studying job interrupt times
on systems of arbitrary replication degree, and arbitrary node
failure distribution. We show agreement of this model with a
previously developed simulator and make three key observations
for systems using process replication; 1) job interrupts are not
exponentially distributed (even when underlying node failures
are), 2) job mean time to interrupt increases exponentially
between full replication degrees, and 3) while partial replication
may pay off for interrupt-dominated jobs, full replication degrees
offer the best overall value.

I. INTRODUCTION

Supercomputer scale is growing in both component count
and societal impact. Once tools for governments only, today
they impact everything from the evening weather forecast to
tire and drug design to fission and fusion research. Their
unparalleled capabilities enable breathtaking science, and de-
mand huge financial, power, and human resources. A dark
cloud of concern is rising however, due to the unavoidable
outcome on current systems that increasing component counts
(up to 220K sockets by 2015 [1]) and stalled component failure
rates [2] result in decreasing time to job interrupt. This stems
directly from the fact that most current systems operate such
that the failure of any non-redundant component interrupts
the entire job. The most common failure mitigation strategy,
checkpoint/restart, saves application state at fixed intervals,
such that when interrupts do occur, jobs can restart from
their last checkpoint. However, checkpoint sizes are increasing
faster than checkpoint bandwidths [2]. It has been shown that
the collision of these trends will render Exascale systems as
“useless” due to checkpoint/restart overheads [1], and thus it
is time for new reliability strategies to be explored [2], [3].

A variety of approaches is possible, including message log-
ging, uncoordinated checkpointing, checkpoint compression,
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and checkpointing to rack-based flash with asynchronous push
to disks [4], but this paper focusses on redundancy since
it is unequalled as a proven-effective resilience strategy in
other domains. It has been studied widely, and deployed in
technical and non-technical settings ranging from circuits and
space ships to communications and governance. In return for
its benefits to completion and correctness in the midst of
failures and faults, it unarguably involves significant costs.
However, its benefits have been shown to outweigh its costs
for many purposes. Redundancy is already deployed at various
scales within supercomputers, including power, disks, and
memory, but it has not been deployed at the macro-scale of
computation itself. At that point, it is roughly assumed to
completely double the cost of systems, for which the return
on investment is unclear to most and silly to some. While full
process replication coupled with traditional checkpoint/restart
has been shown to be a viable resilience strategy for exascale
systems [5]; in this work we explore partial replication.

We begin by showing in section II that job interrupts on
systems with replication are not exponentially distributed, even
when node failures are. We then describe a model for full or
partial replication systems in section III, and explore mean
time to job interrupt and total time to solution in sections IV
and V respectively.

II. JOB INTERRUPT DISTRIBUTION

It is common to assume that node failures are independent
and exponentially distributed [6]–[8]. On a non-replicated
system, it follows that job interrupts are also exponentially
distributed. However, prior works assume that this is also true
on replicated systems [7], [8]. We now show this assumption
to be incorrect and therefore motivate the importance of this
model.

Quantile-quantile plots (Q-Q plots) are a standard means
of assessing whether data observations match a theoretical
distribution. Figure 1 plots simulated job interrupt times on
non, dual, and triple replicated systems, versus exponentially
distributed values. In each case, the mean of the exponential
is set to match the observed mean for each system. While
interrupts for the non-replicated system are clearly exponen-
tially distributed, the times for the replicated systems are not.
This motivates the need for more careful modeling of interrupt
times on systems that use process replication.
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Fig. 1. Q-Q plot of job interupt times for a non-replicated, dual-replicated,
and triple-replicated system. In each case, individual node failures times are
taken from an exponentially distributed random variable. While interrupts for
the non-replicated system are clearly exponentially distributed, the times for
the replicated systems are not.

III. MODEL FOR TIME TO JOB INTERRUPT

We now briefly derive a model for job interrupts on sys-
tems with arbitrary replication, using basic reliability theory
and following previous work [7], [9]. The model makes no
assumption on failure distribution and is useful for exploring
a variety of reliability issues.

Let F (t) be the probability that a device fails by time t,
and R(t) be the probability that the device fails after time t,
R(t) = 1 − F (t), and is commonly known as its reliability.
Assume that device failures are independent and identically
distributed (IID). A series system of N devices will fail upon
the first device failure, Rseries =

∏N
i=1R(t). Conversely, a

parallel system of K devices fails upon the last failure of a
device, or Fparallel =

∏K
i=1 F (t).

Now consider a job running on a series of N replica groups,
where the i’th group has Ki replicas. The total number nodes
involved in the job will be M =

∑N
i=1Ki. Each replica group

is a parallel system, so the probability that all Ki nodes in
group i have failed by time t is Ri(t) = (1−F (t)Ki). The job
will be interrupted as soon as all the nodes in any replica group
have failed, so the probability that the job will be interrupted
by time t is

Rj(t) =

N∏
i=1

(1− F (t)Ki). (1)

Fj(t) = 1−Rj(t)
Fi(t) = F (t)Ki

JMTTI =
∫∞
0

∏N
i=1(1− F (t)Ki)dt

We refer to the ratio of total nodes M to required nodes N
used by a job as replication degree. An integer degree indicates
a full replication level (1 is no replication, 2 is dual, etc),
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Fig. 2. Job mean time to interrupt (JMTTI) increases non-linearly, with sharp
jumps at full replication degrees - suggesting that partial replication will not
pay off. Model and simulation results agree tightly.

while a non-integer indicates partial replication. We use to
N indicate number of nodes because it is an intuitive unit
of job size and common unit of failure repair in the field.
Without loss of generality however, N could track other failure
granularities, such as sockets [2].

IV. JOB MEAN TIME TO INTERRUPT (JMTTI)
One of the first issues explored for HPC systems is the

mean time between job interruptions. It is an intuitive metric
of system reliability, and commonly used for calculating the
optimal time between writing checkpoints [6]. We use the term
JMTTI to refer to job mean time to interrupt to be consistent
with a recent procurement contract [10], and we have found
this distinctive acronym to promote clarity on exactly what is
being discussed. Its use helps avoid getting sidetracked into
what is meant by fault, failure, interrupt, etc. For any node
failure distribution, JMTTI can be calculated as [9]:

JMTTI =

∫ ∞
0

Rj(t)dt. (2)

Figure 2 shows JMTTI as a function of replication degree.
The line depicts numerical evaluation of Equation 2 in Math-
ematica, and the dots depict results from a simple simulator
we wrote which mimics the node failure and job interrupt
behaviour on a system with process replication [11]. The tight
agreement between these provides cross-verification. Here and
throughout this paper, a job size of N = 50, 000 is used, as
this falls within the range where dual replication may be viable
[5]. In addition, an exponential distribution for node failures
is used, F (t) = 1−e−t/θ where θ = 5yr [2] is the mean time
to failure for each node. Consideration of other node failure
distributions is left for future work.

JMTTI does not increase linearly with replication degree.
It increases very slowly just above integer replication degrees,



and very quickly just below them. JMTTI exhibits step-like
increases as integer replication degrees are approached. This
is a surprising trend, and has not been previously shown. By
replicating only 50% of nodes, very little increase in JMTTI
is realized. And why would one replicate only 95% of nodes
when replicating an extra 5% brings the most substantial
increases in JMTTI? The sharp increases at full replication
degrees suggest that the benefits of partial replication will not
outweigh its costs. More important than JMTTI however is
replication’s effect on total time to solution, which we examine
in Section V.

A. Exponential Increases

We now explain the intuition for the sharp increase in
JMTTI at integral replication levels. Consider a system with
N nodes that fail independently. For a given time period, each
individual node has a probability, P of failing within that
interval (F (t) in Section III). Therefore, the probability of the
system (all its nodes) surviving the interval is S = (1−P )N .

Now if each node is a part of a bundle with K replica
nodes, the probability of a bundle failure in this period, the
probability of all of its nodes failing, is PK . So, with K-way
replication, the probability of the system not failing during this
period, the probability that no bundles fail, is: S = (1−PK)N

(Rj(t) in section III).
For partial replication in which Q nodes have nodes have

K + 1 replicas and N − Q nodes have K replicas, the
probability of the system succeeding for the period is simply
the probability of all of the bundles succeeding, based on their
respective replication levels:

S(Q) = (1− PK)N−Q ∗ (1− PK+1)Q (3)

=
(1− PK)N

(1− PK)Q
∗ (1− PK+1)Q (4)

= (1− PK)N ∗
[
1− PK+1

1− PK

]Q
(5)

As Q increases, a bundle that previously succeeded with
probability (1− PK) is replaced with one that succeeds with
greater probability (1− PK+1), that is:

S(Q+ 1) = S(Q) ∗ 1− P
K+1

1− PK
. (6)

This results in a growth function between levels of replication
that is exponential.

Intuitively, as we increase the degree of partial replication,
we exponentially increase the system’s chance of success.
However, since the base of the exponent is a number just very
slightly above 1, replicating just a few of the nodes gives only
a slight benefit. As we replicate more nodes, the replication
benefit compounds, eventually getting us to the benefit of the
next level of full replication. This behavior is independent of
node failure distribution.

V. TIME TO SOLUTION

Although Equation 1 is useful towards the development of
a model for total wallclock time to solution, this is beyond

the scope of this paper. However, in this section we take
an exploratory first look via the aforementioned simulator,
compared with the standard model for wallclock time without
replication. Assuming that job interrupts are exponentially
distributed (see Section II for contrast), Daly has shown that
total wallclock time to solution Tw is given by [6]:

Tw = JMTTI ∗ eR/JMTTI
(
e(τ+δ)/JMTTI − 1

) Ts
τ
. (7)

Here, the time to solve the problem is Ts if there are no inter-
rupts, checkpoints, or restarts. However, time is spent writing
and restarting from checkpoints (δ and R respectively), and
τ is the time spent computing before initiating a checkpoint
write. In this case, Daly shows that the optimal interval is well
estimated by:

τopt = A ∗
√
2 ∗ JMTTI ∗ δ − δ (8)

where

A = 1 +
δ

18 ∗ JMTTI
+

√
δ

18 ∗ JMTTI
. (9)

We examine the case where R = δ = 5 minutes, which is an
optimistic estimate for Exascale systems [5]. The dashed line
in Figure 3(a) shows the evaluation of Equation 7, assuming
perfect strong scaling and no replication. That is, we set
Ts = 200 hours at M = 50, 000, and linearly decrease it
with additional nodes as job size M is increased, such that
Ts = 100 hours at M = 100, 000. JMTTI and τopt are
set appropriately as M is increased. As the dashed runtime
line flattens out, the effect of additional job interrupts from
additional nodes begins to equal their computational benefits.

The solid line in 3(a) shows simulation results for total
wallclock time to solution, if additional nodes are used for
replication instead of increasing job size. In this case, job size
N = 50, 000 is held constant, and replication degree M/N
is increased. Although replication does not decrease runtime
as fast as perfect strong scaling initially, it starts beating it at
about M/N = 1.75. Dual replication (M/N = 2.0) yields the
most pronounced advantage.

On the right hand axis of 3(a), we show overall efficiency,
calculated as Ts/Tw. Note that this job’s overall efficiency
is never less than 50%, which has widely been assumed
to be the point at which replication might be worthwhile.
Yet, using additional nodes to reduce the number of job
interrupts via replication brings greater reduction in total
runtime than perfect strong scaling. This motivates the need
for more investigation on where nodes should be used for
replication instead of increasing job size. A full investigation
will incorporate the overhead costs of replication (e.g. we have
projected communication overhead to be no greater than 5% at
200k sockets [5]), and realistic application scaling instead of
our first order assumptions of no overhead and perfect strong
scaling. These are left for future work.

Figure 3(b) shows the same simulation results, but in terms
of speedup instead of raw wallclock time. The dashed line
indicates the ratio of wallclock time with increasing job size
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(b) Speedup

Fig. 3. 3(a) compares the wallclock benefit of using additional nodes to increase job size (assuming perfect strong scaling) versus using additional nodes
to increase replication degree (where job size is held constant at N = 50, 000). Figure 3(b) shows the same data, but in terms of speedup, calculated as the
ratio of wallclock time at M = N = 50, 000 to wallclock time with additional nodes. Partial replication begins to “pay off” at M/N = 1.75, but full dual
replication offers the best overall value (the greatest speedup compared to using nodes for increased job size). In this case, dual replication yields an overall
efficiency of 98%, leaving little to be gained by further replication.

M versus wallclock time at M = 50, 000 (assuming perfect
strong scaling as before). The solid line indicates the ratio of
wallclock time with increasing replication degree M/N versus
wallclock time at M = N = 50, 000. Their intersection is
consistent with Figure 3(a), at about M/N = 1.75. Note that
the speedup curve with replication mimics the exponentially
increasing behaviour described in Section IV. For this job,
dual replication does so well that there is very little gain left
for triple replication. Our experiments show that this is the
case for all system size and failure rate estimates for Exascale
systems - replication beyond dual is unlikely to be worthwhile
for these systems.

Note that the vertical scale of Figure 2 accomidates the
full range of increase from no replication to triple replication.
As such, JMTTI appears to be nearly flat at low replication
degrees. In contrast, Table I provides JMTTI in minutes, along
with the percentage of jobs which are interrupted before they
can complete their first checkpoint write. We call such jobs
“wasted” as they make no forward progress - the next job will
be starting from the same place as the “wasted” one. For this
simulation, JMTTI increases fast enough at low replication
degrees to significantly reduce the number of wasted jobs.
This explains the smooth decrease in total wallclock time in
Figure 3(a).

From this analysis we conclude that while partial replication
may “pay off” (yield a shorter runtime than perfect strong
scaling), the best overall value is offered by full replication.

VI. RELATED WORK

Fault-tolerance for extreme-scale systems is an active re-
search area with a number of alternative approaches. Most of

M/N JMTTI [minutes] Wasted jobs
1.0 52 43%
1.2 65 39%
1.4 88 34%
1.6 131 28%
1.8 266 20%
2.0 10,416 .05%

TABLE I
AS JMTTI INCREASES WITH REPLICATION DEGREE M/N , FEWER JOBS

ARE INTERRUPTED BEFORE THEY CAN WRITE THEIR FIRST CHECKPOINT.
WE CALL SUCH JOBS “WASTED” BECAUSE THEY MAKE NO FORWARD

PROGRESS.

these alternative approaches decrease overheads by improving
the performance of the checkpoint and restart mechanisms.
Replication, on the other hand, dramatically increases the
application MTTI therefore dramatically decreasing the fre-
quency at which we need to take checkpoints. In the remainder
of this section, we describe these approaches and briefly
discuss their potential benefits and costs.

A. Replication-Based Work

Ferreira et al. [5] used modeling, simulation, and empirical
analysis to outline the benefits of full dual replication for
extreme scale systems. This study looked at a prototype
replication library implementation, called rMPI, to outline the
runtime overheads of this approach. Using these overheads
we found the break-even socket count where full dual replica-
tion will be more efficient that traditional checkpoint/restart.
Similarly, Engelmann et al. [7] investigate the benefits of
full dual and triple redundancy but in terms of the metric



system availability. In this work the authors show how re-
dundancy can significantly increase system availability and
correspondingly lower the required component reliability or
quality. Most recently, Elliot et al. [8] investigate the benefits
of partial replication using an analytical model. This model
has different results from those in this paper, due in part
to the author’s assumption that failures of both the physical
hardware and the replica groups is exponentially distributed.
In fact, this assumption can lead to results that are an order
of magnitude higher than those from the model presented in
this paper and the simulator results presented in [12]. As we
show in Section II, if we assume physical node failures are
exponentially distributed, the failures of the replica groups are
not exponentially distributed. In addition, this work does not
fully evaluate the costs of using replication. In the work all
replicated nodes are assumed to be free and in scenarios where
replication is used the solves times used are for problems
containing different amounts of work.

B. High-speed Storage for Checkpoint/Restart

High speed local storage, for example local disk and flash
memory systems has been proposed to speed up check-
point/restart. This method works by placing large amounts of
high-speed storage near the data that must be checkpointed.
Actually deploying large amounts of local non-volatile storage
in an exascale system is potentially very challenging, how-
ever. Local disk-based storage has traditionally been avoided
because of the increased failures it causes, for example. Up-
coming non-volatile phase change PCRAM [13] and resistive
RRAM devices provide high bandwidth and reliability, but
are potentially very expensive. Modern NAND and NOR flash
technologies are potentially the most promising for buffering
and storing local checkpoints because of their comparatively
low cost, high density, and high reliability. However, their
write durability may require periodically replacing all flash
memory in the system, significantly altering the total cost of
the machine.

C. Asynchronous Checkpointing and Message Logging

Another approach that has been suggested to improve
the performance of checkpointing systems is uncoordinated
or asynchronous checkpointing [14]–[16]. Nodes generally
checkpoint and restore from local storage without the syn-
chronization used by coordinated checkpointing. To ensure
consistent checkpoints, nodes in this approach keep a log of
recent messages that they have sent. When a node restores
from a previous checkpoint, it can then replay reception of
messages using remote nodes’ logs. While this approach can
increase checkpointing performance by decreasing overheads,
it also assumes the availability of local storage. In addition,
logging increases the latency of messaging operations and can
take a significant amounts of space on the node.

D. Memory-based and Multi-level Checkpointing

Memory-based checkpointing [17], [18] uses the memory
of a remote machine to checkpoint node state. Since memory

is regarded as a key budget and power constraint in exascale
systems, it is unclear if the benefits of replicating only mem-
ory are superior to the qualitative advantages of replication.
Similarly, multi-level checkpointing [19] is a library-based
approach for checkpointing to multiple storage targets, in-
cluding memory-based checkpoints, local checkpoint storage,
and remote checkpoints, all in a single system. Because of its
similarity, it shares many of the advantages and disadvantages
of memory-based checkpointing and local storage techniques.
Unlike these techniques, however, multi-level checkpointing
has the flexibility to choose between multiple levels of storage
based on system design parameters and application behavior,
making it a promising technique for exascale systems.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we evaluated the suitability of partial repli-
cation combined with traditional checkpoint/restart as the
primary fault tolerance method for extreme-scale systems.
Using a combination of modeling and simulation, we outline
the impact of arbitrary levels of replication on an applications
interrupt time. Our results show that, when the underlying
node failures are exponentially distributed, the job interrupt
times are not exponential. In addition, we show that the
mean interrupt time for an application increases exponentially
between full replication degrees. Also, we show that while
partial replication can dramatically decrease the the time
to solution for interrupt-dominated applications, the greatest
benefits are seen with integral levels of replication. Most
importantly, the model and simulation described in this paper
more accurately define the benefits of replication than previous
work as it does not assume that interrupt times with replication
are exponentially distributed.

While the research described in this work outlines many of
the potential costs and benefits of partial process replication,
there is a great deal of additional work that remains. For exam-
ple, in this work we only considered exponentially distributed
hardware failures. Considering additional and more realistic
failure distributions is important as results can vary dramat-
ically dependent on the distribution. Also, while we show
that the failure times of replica groups are not exponential,
we have not yet determined what distribution best fits these
times. Having that distribution is important in determining the
optimal number of replicas to use for an application on a given
platform. A closed-form solution for total time to solution and
easy-to-evaluate estimates for JMTTI and optimal checkpoint
interval are also needed. Lastly, the analytical model for
evaluating the benefit and cost of partial replication is too
simple. A more realistic performance model which consider
the overheads of the replication mechanism and application
scaling characteristics is needed to better quantify the viability
of partial replication.
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